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Abstract
The dielectric susceptibility of most materials follows a fractional power-law frequency
dependence that is called the ‘universal’ response. We prove that in the time domain this
dependence gives differential equations with derivatives and integrals of noninteger order.
We obtain equations that describe ‘universal’ Curie–von Schweidler and Gauss laws for such
dielectric materials. These laws are presented by fractional differential equations such that the
electromagnetic fields in the materials demonstrate ‘universal’ fractional damping. The
suggested fractional equations are common (universal) to a wide class of materials, regardless
of the type of physical structure, chemical composition, or of the nature of the polarization.

1. Introduction

A growing number of dielectric relaxation data show that
the classical Debye behavior [1–3] is hardly ever observed
experimentally [4–7]. Instead it has been derived [4–7] that
power laws are a common feature of the dielectric response
of most materials for wide frequency ranges. The fact that
different dielectric spectra are described by the power laws
is confirmed in many measurements [4–6] for a wide class
of various substances. The dielectric susceptibility of most
materials follows, over extended frequency ranges, a fractional
power-law frequency dependence, which is called the law
of ‘universal’ response [4–6]. This law is found both in
dipolar materials beyond their loss-peak frequency, and in
materials where the polarization arises from movements of
either ionic or electronic hopping charge carriers. These
power-law responses are most easily displayed in terms of
the dielectric susceptibility χ̃(ω) = χ ′(ω) − iχ ′′(ω) as a
function of frequency ω. It has been found [8, 9] that the
frequency dependence of the dielectric susceptibility follows
a common universal pattern for virtually all kinds of materials.
The behavior

χ ′(ω) ∼ ωn−1, χ ′′(ω) ∼ ωn−1,

(0 < n < 1, ω � ωp), (1)

and

χ ′(0) − χ ′(ω) ∼ ωm, χ ′′(ω) ∼ ωm,

(0 < m < 1, ω � ωp), (2)

where χ ′(0) is the static polarization and ωp the loss-peak
frequency, is observed over many decades of frequency.
Expressions (1) and (2) serve as the definition of the universal
response behavior.

Note that a consequence of the power laws is that the ratio
of the imaginary to the real component of the susceptibility is
independent of frequency. The frequency dependence given by
equation (1) implies that the real and imaginary components
of the complex susceptibility χ̃(ω) = χ ′(ω) − iχ ′′(ω) obey at
high frequencies the relation

χ ′′(ω)

χ ′(ω)
= cot

(πn

2

)
, (ω � ωp). (3)

The experimental behavior of equation (2) leads to a similar
frequency-independent rule for the low frequency polarization
decrement:

χ ′′(ω)

χ ′(0) − χ ′(ω)
= tan

(πm

2

)
, (ω � ωp). (4)

This being a unique consequence of Kramers–Kronig relations
and does not depend on any particular physical process.

2. Fractional equations for laws of universal response

For the region ω � ωp, the universal fractional power law (1)
can be presented in the form

χ̃(ω) = χα (iω)−α, (0 < α < 1) (5)
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with some positive constant χα and α = 1 − n. Using

(iω)α = |ω|α exp{i α π sgn(ω)/2},

it is easy to derive relation (3). The polarization density can be
written as

P(t, r) = F−1(P̃(ω, r)) = ε0F−1(χ̃(ω)Ẽ(ω, r))

= ε0χαF−1((iω)−αẼ(ω, r)), (6)

where P̃(ω, r) is a Fourier transform F of P(t, r). Equation (6)
can be represented by integrals of noninteger order α = 1 − n.
The fractional Liouville integral [10, 11] is defined by

(I α
+ f )(t) = 1

�(α)

∫ t

−∞
f (t ′) dt ′

(t − t ′)1−α
.

The Fourier transform F of this integral is given (see theorem
7.1. in [10] and theorem 2.15 in [11]) by the relation

(F I α
+ f )(ω) = 1

(iω)α
(F f )(ω).

As a result, the fractional power law (5) gives

P(t, r) = ε0χα(I α
+E)(t, r), (0 < α < 1). (7)

For the region ω � ωp, the universal fractional power
law (2) can be presented as

χ̃(ω) = χ̃(0) − χβ(iω)β, (0 < β < 1) (8)

with some positive constants χβ , χ̃(0), and β = m. It is not
hard to prove that equation (4) is satisfied. The law (8) can
be presented by the fractional Liouville derivative [10, 11] that
is denoted by Dβ

+. The differential operator Dβ
+ of order β is

defined by the equation

(Dβ
+ f )(t) = ∂k

∂ tk
(I k−β

+ f )(t) = 1

�(k − β)

× ∂k

∂ tk

∫ t

−∞
f (t ′) dt ′

(t − t ′)β−k+1
, (k − 1 < β < k). (9)

The Fourier transforms F of this derivative (see theorem 7.1.
in [10] and theorem 2.15 in [11]) is given by

(FDβ
+ f )(ω) = (iω)β(F f )(ω).

As a result, the fractional power law (8), gives the polarization
density

P(t, r) = ε0F−1(χ̃(ω)Ẽ(ω, r)) (10)

in the form

P(t, r) = ε0χ̃(0)E(t, r) − ε0χβ(Dβ
+E)(t, r),

(0 < β < 1). (11)

Equations (7) and (11) can be considered as the universal
response laws [4–6] for the time domain. These equations
allow us to derive fractional equations for electric and magnetic
fields.

3. Fractional equations of the Curie–von Schweidler
law

Using (7) and (11), the polarization current density

Jpol(t, r) = ∂P(t, r)

∂ t
(12)

can be described by the fractional equations

Jpol(t, r) = ε0χα(D1−α
+ E)(t, r), (0 < α < 1), (13)

and

Jpol(t, r) = ε0χ̃(0)D1
t E(t, r) − ε0χβ(D1+β

+ E)(t, r),

(0 < β < 1). (14)

For constant electric field E(t, r), equations (13) and (14) show
that the time dependence of the relaxation of the polarization
current density (12) after the sudden removal of a polarizing
field follows the power laws, which is widely observed
in practice [4] and is known as the Curie–von Schweidler
law [12, 13]. For the changeable field E(t, r), equations (13)
and (14) can be considered as a generalization of the well-
known Curie–von Schweidler law. Let us consider some
examples of this generalization.

(1) Using (13) and (14), we can derive the usual Curie–
von Schweidler law. The most elementary part of the applied
field E(t, r) is the step function

E(t, r) =
{

0, t < a,

E0(r), t > a.
(15)

In this case, equations (13) and (14) give

Jpol(t, r) = ε0χαE0(r)(a D1−α
t 1)(t)

= ε0χαE0(r)
(t − a)α−1

�(α)
, (t > a, 0 < α < 1), (16)

and

Jpol(t, r) = −ε0χβE0(r)(a D1+β
t 1)(t)

= −ε0χβE0(r)
(t − a)−β−1

�(−β)
, (t > a, 0 < β < 1),

where we use [10] the relation

(a Dα
t 1)(t) = (t − a)−α

�(1 − α)
, (t > a, α > 0).

Here a Dα
t is the fractional derivative

(a Dα
t u)(t) = ∂k

∂ tk
(a I k−α

t u)(t)

= 1

�(k − α)

∂k

∂ tk

∫ t

a

u(t ′) dt ′

(t − t ′)α−k+1
, (17)

where n = [Re(α)] + 1, i.e., n − 1 < α < n.
As a result, we obtain the usual Curie–von Schweidler law

that is described by

E(t, r) = ε0χαE0(r)
(t − a)α−1

�(α)
, (t > a, 0 < α < 1);

E(t, r) = −ε0χβE0(r)
(t − a)−β−1

�(−β)
, (t > a, 0 < β < 1).

(18)
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(2) The experimental applied field E(t, r) can be presented
as

E(t, r) = E0(r) sin(λt). (19)

Using the relation [10]:

Dα
+ sin(λt + φ) = λα sin(λt + φ + απ/2), (α > 0),

equations (13), (14), and (19) give

Jpol(t, r) = ε0χαE0(r)λα sin(λt + (1 − α)π/2),

(0 < α < 1), (20)

and

Jpol(t, r) = ε0E0(r)[χ̃(0)λ cos(λt)

− χβλ1+β sin(λt + (1 + β)π/2)], (0 < β < 1).

(21)

Equation (21) can be rewritten in the form

Jpol(t, r) = ε0a(β)E0(r) sin(λt + b(β)), (22)

where a(β) and b(β) describe the amplitude and phase
changes by the equations

a(β) =
√

A2(β) + B2(β), b(β) = arctan
( A(β)

B(β)

)
.

Here
A(β) = χ̃(0)λ − χβλ1+β cos(βπ/2),

B(β) = χβλ1+β sin(βπ/2).

(3) For the applied field

E(t, r) =
{

0, t < a,

E0(r)g(t), t > a
(23)

with some function g(t), exact expressions for the polarization
current density Jpol(t, r) can be derived by using the list of
fractional derivatives of the function g(t) (see tables 9.1–9.3
in [10]). For g(t) = (t − a)s , where s > −1,

a Dα
t g(t) = a Dα

t (t − a)s = �(s + 1)

�(s + 1 − α)
(t − a)s−α,

(s > −1, α > 0). (24)

The fractional derivative of g(t) = cos[λ(t − a)] is

a Dα
t cos λ(t − a) = (t − a)−α

2�(1 − α)

× [1 F1(1, 1−α, iλ(t−a)) + 1 F1(1, 1−α,−iλ(t−a))],
where 1 F1(a, b, c) is a hypergeometric function [14]. For
g(t) = exp(−λt), we use

a Dαe−λt = e−λt (t − a)−α E1,1−α[−λ(t − a)],
(0 < α < 1), (25)

where Eα,β[z] is the Mittag–Leffler function [15]:

Eα,β[z] =
∞∑

k=0

zk

�(αk + β)
. (26)

If α = β = 1, then E1,1[z] = exp(z), where �(k + 1) = k! for
positive integer k.

As a result, fractional relations (13) and (14) can be
considered as a generalization of the formulation of the
Curie–von Schweidler law from a constant electric field into
changeable fields E(t, r).

4. Fractional Gauss’s laws for electric field

Time-domain laws are presented by the fractional integral and
differential equations (7) and (11). Using the equation

D(t, r) = ε0E(t, r) + P(t, r), (27)

and Gauss’s law

div D(t, r) = ρ(t, r)

for the electric displacement field D(t, r), we get

ε0 div E(t, r) + div P(t, r) = ρ(t, r). (28)

Substitution of (7) and (11) into (28) gives

ε0 Z(t, r) + ε0χα(I α
+ Z)(t, r) = ρ(t, r),

(0 < α < 1), (29)

ε0χ̃(0)Z(t, r) − ε0χβ(Dβ
+Z)(t, r) = ρ(t, r),

(0 < β < 1), (30)

where Z(t, r) = div E(t, r). Using (Dα+ I α+ Z)(t, r) = Z(t, r)

(see lemma 2.20 in [11]), we obtain

(Dα
+ Z)(t, r) + χα Z(t, r) = 1

ε0
(Dα

+ρ)(t, r),

(0 < α < 1), (31)

(Dβ
+ Z)(t, r) − χ̃(0)

χβ

Z(t, r) = − 1

ε0χβ

ρ(t, r),

(0 < β < 1), (32)

which are fractional differential equations of Gauss’s law for
the electric field E(t, r).

For a fixed (stationary) region R of medium, we define the
total electric charge

Q(t) =
∫

R
ρ(t, r) dV . (33)

The electric field E = E(t, r) passing through a surface S =
∂ R gives the electric flux

E (t) =
∫

S
(E, dS) =

∫

R
div E dV . (34)

The integration of equations (31) and (32) over the region R
gives the fractional equations

(Dα
+E)(t) + χαE (t) = 1

ε0
(Dα

+ Q)(t),

(0 < α < 1), (35)

(Dβ
+E)(t) − χ̃ (0)

χβ

E (t) = − 1

ε0χβ

Q(t),

(0 < β < 1). (36)

These equations represent the integral Gauss’s laws for the
electric field in dielectric media. Note that Dα+ is the
differential operator of order α that is defined by equation (9).
If E(t, r) is defined by

E(t, r) =
{

0, t < a,

E(t, r), t > a,
(37)

3
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then the operator Dα+ transforms into the operator a Dα
t that is

defined by equation (17).
Consider equations (35) and (36) in the form

a Dα
t u(t) − λu(t) = f (t), 0 < α < 1, (38)

where u(t) presents Z(t, r) or E(t)λ is −χα or χ̃(0)/χβ , the
function f (t) is (1/ε0)a Dα

t ρ(t, r) and (−1/ε0χβ)ρ(t, r), or
(1/ε0)a Dα

t Q(t) and (−1/ε0χβ)Q(t). The fractional derivative
a Dα

t is defined by (17). Note that

(Dα
+u)(t) = lim

a→−∞ (a Dα
t u)(t).

Barrett [16] in 1954 first considered the Cauchy type
problem for a linear differential equation (38) with initial
conditions

(a Dα−1
t u)(a) = C, (39)

where a Dα−1
t = a I 1−α

t is the Riemann–Liouville fractional
integral [11]. Note that any change in the past of the input
function of a fractional order system changes the future of the
solution [17–19]. Hence the past of such systems cannot be
represented by a finite set of local conditions [17–19], and the
initial conditions have the integral form (39).

Barrett proved in [16] (see also [11] theorem 4.1 and
example 4.1.) that if f (t) is an integrable function on (a, b),
then the problem (38), (39) has the unique solution given by

u(t) = C(t − a)α−1 Eα,α[λ(t − a)α]
+

∫ t

a
(t − t ′)α−1 Eα,α[λ(t − t ′)α] f (t ′) dt ′, (40)

where Eα,α[z] is the Mittag–Leffler function defined by (26).
For f (t) = 0, we obtain

u(t) = C(t − a)α−1 Eα,α[λ(t − a)α]. (41)

To consider the asymptotic behavior of the solutions (40)
and (41), we can use the integral representation [20–22] of the
Mittag–Leffler function:

Eα,β[z] = 1

2π iα

∫

γ (a,δ)

eξ 1/α

ξ (1−β)/α

ξ − z
dξ,

(1 < α < 2), (42)

where πα/2 < δ < min{π, πα}. The contour γ (a, δ)

consists of two rays S−δ = {arg(ξ) = −δ, |ξ | � a} and
S+δ = {arg(ξ) = +δ, |ξ | � a}, and a circular arc Cδ = {|ξ | =
1,−δ � arc(ξ) � δ}. Let us denote the region on the left
from γ (a, δ) by G−(a, δ). Then the asymptote of (42) has the
form [21, 22]:

Eα,β[z] = −
∞∑

k=1

z−k

�(β − αk)
, z ∈ G−(a, δ),

(|z| → ∞), (43)

and δ � | arg(z)| � π . In our case, z = λ(t − a)α, arg(z) = π .
As a result, we arrive at the asymptote of the solution, which
exhibits power-like tails. These power-like tails are the most
important effect of the noninteger derivative in the fractional
equations.

5. Conclusion

In this paper, it has been shown that the electromagnetic
fields in a wide class of dielectric materials must be described
by differential equations of fractional order with respect
to time. The orders of these equations are defined by
exponents of the ‘universal’ response laws for frequency
dependence of the dielectric susceptibility. A remarkable
property of the dynamics described by the fractional equations
for electromagnetic fields is that the solutions have power-like
tails. The typical features of the ‘universal’ electromagnetic
phenomenon and the suggested fractional equations are
common to a wide class of materials, regardless of the type
of physical structure, chemical composition or of the nature of
the polarizing species, whether dipoles, electrons or ions.

For small fractionality α (or β), it is possible to
use a ε-expansion [23] over the small parameter. The
suggested fractional differential equations, which describe the
fields in dielectric media with power-law frequency-domain
response, can be solved numerically. There are several
numerical methods to solve fractional equations (for example,
see [10, 24–26]). In this paper we consider only general
equations without numerical examples.

The presented approach does not take into account the
dielectric dispersion region around the loss-peak frequency
ωp. This is a limitation of the fractional calculus formalism.
Note that the universal dispersion is only valid over a finite
frequency region. There exist numerical methods without
a priori assumptions to tackle frequency to time and time
to frequency conversions using the distribution of relaxation
times approach. There are several papers on this topic by
different authors (for example, see [27–31]).

Note that Tuncer has shown [32] that in binary mixtures
Maxwell–Wagner polarization could lead to a universal
dispersion on a finite frequency region. In that study the
disorder in the system leads to a universal dispersion through
the Gauss law.

Note that it will be interesting to find a generalized
physical explanation for fractional power laws. Unfortunately,
after more than 30 years we still do not have an explanation
of the universal response from first principles. There are
several papers on the fractional kinetic approach to the
dielectric universal response by different authors (for example,
see [33–35]).
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